Total Pages: 5

BCA-105

B.C.A. (First Year) Examination, 2019

BASIC MATHEMATICS

Paper-V

Time Allowed: Three Hours

Maximum Marks: 100

PART-A

[Marks: 20

Answer all questions (50 words each).

All questions carry equal marks.

PART-B

[Marks : 50

Answer five questions (250 words each), selecting one question from each Unit. All questions carry equal marks.

PART-C

[Marks: 30

Answer any two questions (300 words each).

All questions carry equal marks.

BCA-105/424/1,280

P. T. O.

PART-A

- 1. Answer the following questions:
 - (i) Define the Proper subset.
 - (ii) Define the Domain and Range of a relation.
 - (iii) Find the value of $\lim_{x \to -3} \frac{x+3}{x^2+4x+3}$.
 - (iv) What is discontinuity? Define it.
 - (v) Find the distance between (0, 0) and (3, 4).
 - (vi) Find the equation of a straight line passes through (0, 1) and (2, 3).
 - (vii) If $y = x^3 \frac{1}{x^3}$ then find $\frac{dy}{dx}$.
 - (viii) Write statement of Liebnitz theorem.
 - (ix) Evaluate $\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^3 dx$.
 - (x) Evaluate $\int \frac{1}{1-\sin x} dx$.

PART-B

UNIT-I

2 If $A = \{1, 2, 3\}$, $B = \{2, 3, 4\}$, $C = \{1, 3, 4\}$, $D = \{2, 4, 5\}$, then show that

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$$

3. A relation R is defined from a set $A = \{2, 3, 4, 5\}$ to a set $B = \{3, 6, 7, 10\}$ as follows: $(a, b) \in R \Leftrightarrow a$ is relatively prime to b.

UNIT-II

- 4. Show that the function $f: R \to R$ given by f(x) = ax + b, where $a, b \in R$, $a \ne 0$ is a bijection.
- 5. A function f(x) is defined as

$$f(x) = \begin{cases} x+1 & \text{if } & -1 < x < 0 \\ x & \text{if } & 0 \le x \le 1 \\ 2-x & \text{if } & 1 < x \le 2 \end{cases}$$

Show that it is discontinuous at x = 0 but is continuous at x = 1.

UNIT-III

6. Show that the points A(1, 2), B(2, 5) and C(5, 6) form an isosceles triangle.

7. If
$$A = \begin{bmatrix} -1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 2 & 5 \end{bmatrix}$$

then show that $A^3 = A$.

UNIT-IV

- 8. Differentiate $y = \frac{e^x + e^{-x}}{e^x e^{-x}}$ with respect to x.
 - 9. Differentiate $\tan \left\{ \log \sqrt{1+x^2} \right\}$ with respect to x.

UNIT-V

10. Evaluate
$$\int \frac{dx}{\sqrt{4x^2 - 5x + 1}}$$
.

11. Solve
$$\int \frac{e^{\tan^{-1}x}}{1+x^2} dx.$$

BCA-105/424/1,280

- 12. In a class, 21 students play cricket, 26 play hockey, 29 play vollyball. If 14 students play cricket and hockey, 12 play cricket and vollyball, 15 play hockey and vollyball and 8 students play all three games then how many students playing only cricket?
- 13. Find the values of a, b and c if

$$\lim_{x\to 0} \frac{ae^x - b\cos x + ce^{-x}}{x\sin x} = 2.$$

14. Obtain the inverse of the matrix

$$\begin{bmatrix} 2 & 4 & -1 \\ 3 & 1 & 2 \\ 1 & 3 & -3 \end{bmatrix}$$

Hence solve the following system of equations 2x + 4y - z = 9, 3x + y + 2z = 7, x + 3y - 3z = 4.

- 15. Prove that the maximum value of $\left(\frac{1}{x}\right)^x$ is $e^{1/e}$.
- 16. Evaluate $\int_{0}^{\pi/4} \log(1+\tan x) dx.$

BCA-105/424/1,280